Центральные и периферические органы иммунной системы 1

ФИЛОГЕНЕЗ ИММУННОЙ СИСТЕМЫ

Иммунная система осуществляет защиту организма от проникновения в организм генетически чужеродных тел: микроорганизмов, вирусов, чужих клеток, инородных тел. Ее действие основано на способности отличать собственные структуры от генетически чужеродных, элиминируя их.

В эволюции сформировалось три главных формы иммунного ответа:

1) Фагоцитоз, или неспецифическое уничтожение чужеродного материала;

2) Клеточный иммунитет, основанный на специфическом распознавании и уничтожении такого материала Т-лимфоцитами;

3) Гуморальный иммунитет, осуществляемый путем образования потомками В-лимфоцитов, так называемыми плазматическими клетками, иммуноглобулинов (антител) и связывания ими чужеродных антигенов.

В эволюции выделяют три этапа формирования иммунного ответа:

1. Квазииммунное (лат наподобие) распознавание организмом своих и чужеродных клеток. Этот тип реакции наблюдается от кишечнополостных до млекопитающих. Эта реакция не связана с выработкой иммунных тел, и при этом не формируется иммунной памяти, то есть еще не происходит усиления иммунной реакции на повторное проникновение чужеродного материала.

2. Примитивный клеточный иммунитет обнаружен у кольчатых червей и иглокожих. Он обеспечивается целомоцитами – клетками вторичной полости тела, способными уничтожать чужеродный материал. На этом этапе появляется иммунологическая память.

3. Система интегрального клеточного и гуморального иммунитета. Для нее характерны специфические клеточные и гуморальные реакции на чужеродные тела, наличие лимфоидных органов иммунитета, образование антител. Такого типа иммунная система не характерна для беспозвоночных.

Круглоротые способны формировать антитела, но вопрос о наличии у них вилочковой железы, как центрального органа иммуногенеза, является пока открытым. Впервые тимус обнаруживается у рыб.

Эволюционные предшественники лимфоидных органов млекопитающих – тимус, селезенка, скопление лимфоидной ткани обнаруживаются в полном объеме у амфибий. У низших позвоночных (рыбы, амфибии) вилочковая железа активно выделяет антитела, что не характерно для птиц и млекопитающих.

Особенность иммунного ответа птиц состоит в налиции особоги лимфоидного органа – фабрициевой сумки. В этом органе образуются В-лимфоциты, которые после антигенной стимуляции способны трансформироваться в плазматические клетки, вырабатывающие антитела.

У млекопитающих органы иммунной системы разделяют на два типа: центральные и периферические. В центральных органах созревание лимфоцитов происходит без существенного влияния антигенов. Развитие периферических органов, наоборот, непосредственно зависит от антигенного воздействия – лишь при контакте с антигеном в них начинаются процессы размножения и дифференциации лимфоцитов.

Центральными органами иммуногенеза у млекопитающих являются тимус, где происходит образование и размножение Т-лимфоцитов, а также красный костный мозг, где образуются и размножаются В-лимфоциты.

На ранних стадиях эмбриогенеза из желточного мешка в тимус и красный костный мозг мигрируют стволовые лимфатические клетки. После рождения источником стволовых клеток становится красный костный мозг.

Периферическимилимфоидными органами являются: лимфоузлы, селезенка, миндалины, лимфоидные фолликулы кишечника. К моменту рождения они еще практически не сформированы и образование в них лимфоцитов начинается только после антигенной стимуляции, после того, как они заселяются Т- и В-лимфоцитами из центральных органов иммуногенеза.

Таким образом, иммунная система возникла на ранних этапах эволюции и в ее основе сложились механизмы узнавания чужеродных антигенов, их разрушение и удаление, что совершенно необходимо для выживания организмов.

С эволюционной точки зрения самой древней из иммунных реакций стал фагоцитоз, который имеет место у всех животных – от одноклеточных и до самых высокоорганизованных многоклеточных организмов. Для них это одна из форм неспецифической защиты от внедрения генетически чужеродных тел. По мере эволюции сложились и более сложные формы защиты – клеточный и гуморальный иммунитет, которые четко различают «свое» и «не свое» и защищают организм от последних, в том числе и от злокачественно перерожденных собственных клеток.

48.Онтогенез, его типы и периодизация.

Онтогенез, или индивидуальное развитие, – это совокупность преобразований, происходящих в организме от момента образования зиготы до смерти. Термин «онтогенез» впервые введен немецким биологом Э.Геккелем в 1866 г.

Различают 2 типа онтогенеза: непрямой и прямой (рис. 1).

Непрямой онтогенез протекает в личиночной форме. Личинки ведут активный образ жизни, сами себе добывают пропитание. Для осуществления жизненных функций у личинок имеется ряд провизорных (временных) органов, отсутствующих у взрослых организмов. Этот тип развития сопровождается метаморфозом (превращением) — анатомо-физиологической перестройкой организма. Он свойствен различным группам беспозвоночных (губкам, кишечнополостным, червям, некоторым насекомым) и низшим позвоночным (амфибиям).

Прямое развитие может протекать в неличиночной форме или быть внутриутробным. Неличиночный тип развития имеет место у рыб, пресмыкающихся, птиц, а также беспозвоночных, яйцеклетки которых богаты желтком — питательным материалом, достаточным для завершения онтогенеза. Для питания, дыхания и выделения у зародышей также развиваются провизорные органы.

Внутриутробный тип развития характерен для млекопитающих и человека. Их яйцеклетки почти не содержат питательного материала, и все жизненные функции осуществляются через материнский организм. В связи с этим у зародышей имеются провизорные органы – зародышевые оболочки и плацента, обеспечивающая связь организма матери и плода. Это наиболее поздний в филогенезе тип онтогенеза. Он обеспечивает наилучшим образом выживание зародышей.

Онтогенез включает в себя ряд преемственно связанных и в основных чертах генетически запрограммированных периодов:

1. Предэмбриональный (он же проэмбриональный, или предзиготный период, или прогенез);

2. Эмбриональный (или антенатальный для человека) период;

3. Постэмбриональный (или постнатальный для человека) период.

49.Общая характеристика предзиготного периода, стадии эмбрионального развития. Критические периоды. Тератогенные факторы.

Этот период протекает в организме родителей и выражается в гаметогенезе – образовании зрелых яйцеклеток и сперматозоидов (рис. 2).

В настоящее время известно, что в этот период происходит ряд процессов, имеющих прямое отношение к ранним стадиям эмбрионального развития. Так, в ходе созревания яйцеклеток в пахинеме мейоза наблюдается амплификация генов (образование многочисленных копий), отвечающих за синтез р-РНК, с последующим выделением их из ДНК и накоплением вокруг ядрышек. Эти гены включаются в транскрипцию на ранних стадиях эмбриогенеза, обеспечивая накопление р-РНК, участвующей в образовании рибосом. Кроме того, в предзиготном периоде происходит также накопление как бы впрок и-РНК, включающейся в биосинтез белка только на ранних стадиях дробления зиготы.

Яйцеклетки некоторых видов животных еще до оплодотворения приобретают билатеральную симметрию, однако она еще неустойчива и может в дальнейшем переориентироваться.

У многих видов животных еще до оплодотворения начинается сегрегация (перераспределение) органоидов и включений в яйцеклетках; отмечается скопление гликогена и и-РНК на анимальном полюсе, комплекса Гольджи и аскорбиновой кислоты – на экваторе. Сегрегация продолжается после оплодотворения.

Рис. 1. Образование зрелых половых клеток — предзиготный период индивидуального развития

Во время овогенеза в яйцеклетках идет накопление желтка, гликогена и жиров, которые расходуются в процессе эмбриогенеза.

По количеству содержания желтка (lecithos) яйцеклетки могут быть:

· мезолецитальными (со средним количеством желтка);

По характеру распределения желтка в цитоплазме яйцеклетки бывают (рис. 3):

· изолецитальные (греч. Isos – равный, желток распределен в клетке равномерно);

Читайте также:  СВЕРТЫВАНИЕ КРОВИ Энциклопедия

· телолецитальные (греч. thelos – конец, желток смещен ближе к вегетативному полюсу, а клеточное ядро – к анимальному);

· центролецитальные (желток располагается в центральной части яйцеклетки)

Изолецитальные клетки характерны для ланцетника и млекопитающих, телолецитальные – для амфибий (умеренно телолецитальные, для рептилий и птиц – резкотелолецитальные), центролецитальные – для насекомых.

Яйцеклетки некоторых видов животных еще до оплодотворения приобретают билатеральную симметрию, однако она еще неустойчива и может в дальнейшем переориентироваться.

У многих видов животных еще до оплодотворения начинается сегрегация (перераспределение) органоидов и включений в яйцеклетках; отмечается скопление гликогена и и-РНК на анимальном полюсе, комплекса Гольджи и аскорбиновой кислоты — на экваторе. Сегрегация продолжается и после оплодотворения.

КРИТИЧЕСКИЕ ПЕРИОДЫ РАЗВИТИЯ

В 1921 г. Стоккард Ц.Р. положил начало представлениям о так называемых критических периодах развития животных организмов. Этой проблемой позже у нас в стране занимался Светлов П.Г., который в 1960 г. сформулировал теорию критических периодов развития, проверил ее экспериментально. Сущность ее состоит в том, что каждый этап развития зародыша начинается коротким периодом качественно новой перестройки, сопровождающемся детерминацией, пролиферацией и дифференцировкой клеток. В этот период наблюдается особая восприимчивость к различным повреждающим факторам среды – физическим, химическим и в ряде случаев – биологическим, которые могут ускорять, замедлять и даже приостанавливать развитие.

В онтогенезе человека выделяют следующие критические периоды: 1) гаметогенез; 2)оплодотворение; 3)имплантацию; 4)развитие комплекса осевых органов и формирование плаценты (3-8-я недели) 5) периоды дифференцировки того или иного органа или системы органов, (20-24-я недели);. 6)рождение; 7) период новорожденности (до 1 года); 8) половое созревание.

Вредные факторы, вызывающие аномальное развитие плода, называются тератогенными.

Выделяют 5 основных групп тератогенных факторов:

Первая группа: ионизирующая радиация, органические и неорганические химические соединения, загрязняющие воду, воздух, почву, продукты питания: промышленные выбросы, тяжелые металлы (ртуть, свинец, кадмий), сельскохозяйственные яды, в том числе пестициды, инсектициды, минеральные удобрения, продукты нефтепереработки и неполного сгорания горюче–смазочных материалов, профессиональные вредности, связанные с радиацией и химическим производством.

Вторая группа: токсичные вещества, добровольно принимаемые внутрь или вдыхаемые в период беременности: алкоголь, наркотики, табачный дым.

Третья группа: лекарственные средства, применяемые в период беременности — к ним относятся антибиотики, аспирин, снотворные, противоэпилептические средства, половые гормоны и другие.

Четвертая группа: внутриутробные инфекции (краснуха, цитомегалия, токсоплазмоз, сифилис, ВИЧ).

Пятая группа: нарушения обмена веществ у беременных женщин — сахарный диабет, дефицит незаменимых аминокислот и витаминов, особенно фолиевой кислоты, дефицит йода и селена, голодание, недосыпание.

50.Постэмбриональные периоды онтогенеза у человека (ювенильный, пубертатный, юношеский, зрелый, пожилой, старческий). Их морфофункциональные особенности. Понятие об акселерации.

Постэмбриональный период онтогенеза (постнатальный для человека) начинается после появления организма на свет. У разных организмов он протекает от нескольких дней до сотен лет в зависимости от их видовой принадлежности.

У позвоночных животных в постэмбриональном развитии выделяют периоды раннего и позднего онтогенеза:

-ранний онтогенез характеризуется ростом организма, формированием пропорций и формы тела.

-поздний онтогенез включает в себя периоды зрелости и старости.

У человека в постнатальном периоде онтогенезе выделяют 7 периодов: ювенильный, пубертатный, юношеский, зрелый, пожилой, старческий, долгожительство (табл.1).

Таблица 1

Дата добавления: 2016-06-18 ; просмотров: 7058 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Лекции Пашкова. Цель изучения биологии в медицинском вузе

Филогенез иммунной системы.

Эволюция живого мира состояла в образовании таких форм жизни, которые активно взаимодействуют с другими живыми организмами. Биологические организмы существуют в биотическом окружении. Они взаимодействуют с другими организмами, в биоценозе существует круговорот.

Абиотические факторы менее сильно воздействуют на организм. Эволюция живой материи привела к возникновению динамической системы взаимозависимых организмов, не могут существовать без биотического взаимодействия. Такие взаимодействия проявляются в питании и обмене веществ. Существует тенденция к усложнению связей. Современные многоклеточные организмы во многом утратили возможность синтезировать даже простые органические вещества, но научились добывать их в готовом виде. Это консументы (в том числе человек). Жизнь основана на питании продуктами биосинтеза, создание которых осуществляется продуцентами (зеленые растения). Жизнь консументов напрямую зависит от биологической продуктивности растений и от развитости растениеводства. Растениеводство- источник пищи и сырья для промышленности (в том числе фармацевтической промышленности). 40% лекарственных средств в мировой фармацевтической промышленности растительного происхождения, снижение продуктивности растений приводит к голоданию, недоеданию, ухудшению качества жизни, снижению производства и уровня общественного здоровья. Важнейший фактор, понижающий урожайность растений – микроорганизмы, грибы, бактерии. Они приспособлены к паразитизму на разных растениях, животных и человеке. Пандемия гриппа – «испанки» унесла жизни 20 млн. человек. Жертвы микробного паразитизма — все живые организмы, в том числе и сами микробы.

Почему земле до сих пор не населена одними микроорганизмами?

Почему жестокий антагонизм между живыми существами не привел к гибели живой материи еще на заре эволюции?

Почему эволюция не остановилась?

Ответы на эти и многие другие вопросы дает иммунология.

Иммунитет – невосприимчивость, устойчивость, резистентность, толерантность – способность организма противостоять агрессии со стороны других биологических видов.

1902 г. Мечников и Зильбер основали учение об иммунитете.

«Иммунитет – это совокупность всех наследственных полученных и индивидуально приобретенных организмом свойств, которые препятствуют проникновению и размножению микроорганизмов, вирусов и других патогенных объектов и действию выделяемых ими продуктов».

Наследственный иммунитет – свойства невосприимчивости, полученные от предков. Он определяется генотипом.

Индивидуальный иммунитет — приобретенный иммунитет, который вырабатывается на протяжении жизни организма.

Выделяют следующие группы факторов иммунитета:

Лимфоидные факторы – наследственная способность организмов создавать иммунитет.

Конституциональные – имеют общебиологическое значение. Они присутствуют у всех организмов независимо от таксономического положения.

У беспозвоночных и позвоночных существует система фагоцитоза. У растений и простейших подобная система отсутствует. Растения защищены только наследственными свойствами. Грибы и вирусы тоже не защищены. Только у позвоночных существует приобретенная невосприимчивость благодаря наличию лимфоидной системы. При этом защитные функции лимфатической системы осуществляются специфической активностью антител и иммуноглобулинов.

Антигены – любые вещества, удовлетворяющие требованиям:

— вступают в реакцию с молекулой комплементарного иммуноглобулина.

Наибольшей антигенной активностью обладают белки, меньшей – полисахариды и нуклеиновые кислоты. Существует большое количество антител.

Антитела вырабатываются комплексом органов:

— пейеровы бляшки тонкого кишечника;

— сумка Фабрициуса (у птиц).

Изучение иммунитета производится на растениях. Восприимчивость генетически детерминирована (доминантные и рецессивные признаки). Более 50 лет изучается иммунитет иммуногенетикой.
Эндокринная система.

В любом организме вырабатываются соединения, разносящиеся по всему организму, имеющие интегративную роль. У растений есть фитогормоны, контролирующие рост, развитие плодов, цветов, развитие пазушных почек, деление камбия и др. Фитогормоны есть у одноклеточных водорослей.

Гормоны появились у многоклеточных организмов, когда возникли специальные эндокринные клетки. Однако химические соединения, играющие роль гормонов, были и раньше. Тироксин, трийодтиронин (щитовидная железа) обнаружены у цианобактерий. Гормональная регуляция у насекомых изучена плохо.

Читайте также:  Хронический зуд - первое проявление онкологии Полный контакт Радиостанция Вести FM Прямой эфирСлуш

В 1965 году Вильсон выделил инсулин из морской звезды.

Оказалось, что дать определение гормону очень трудно.

Гормон – это специфическое химическое вещество, выделяемое особыми клетками в определенном участке тела, которое поступает в кровь и затем оказывает специфическое действие на определенные клетки или органы-мишени, расположенные в других областях тела, что приводит к координации функций всего организма в целом.

Известно большое количество гормонов млекопитающих. Они делятся на 3 основные группы.

Феромоны. Выделяются во внешнюю среду. С их помощью животные принимают и передают информацию. У человека запах 14 — окситететрадекановой кислоты четко различают только женщины, достигшие половой зрелости.

Наиболее просто организованные многоклеточные организмы – например, губки тоже имеют подобие эндокринной системы. Губки состоят из 2 слоев – энтодермой и экзодермой, между ними располагается мезенхима, в которой содержатся макромолекулярные соединения, характерные для соединительной ткани более высокоорганизованных организмов. В мезенхиме есть мигрирующие клетки, некоторые клетки способны секретировать серотонии, ацетилхолин. Нервная система у губок отсутствует. Вещества, синтезируемые в мезенхиме, служат для связи отдельных частей организма. Координация осуществляется за счет перемещения клеток по мезенхиме. Есть также и перенос веществ между клетками. Заложена основа химической сигнализации, которая характерна для остальных животных. Самостоятельных эндокринных клеток нет.

У кишечнополостных имеется примитивная нервная система. Первоначально нервные клетки выполняли нейросекреторную функцию. Трофическую функцию, осуществляли контроль роста, развития организма. Затем нервные клетки стали вытягиваться и образовали длинные отростки. Секрет выделялся около органа-мишени, без переноса (т.к. не было крови). Эндокринный механизм возник раньше проводникового. Нервные клетки были эндокринными, а потом получили и проводниковые свойства. Нейросекреторные клетки был первыми секреторными клетками.

Первичноротые и вторичноротые вырабатывают одинаковые стероидные и пептидные гормоны. Принято считать, что в процессе эволюции из одних полипептидных гормонов могут возникнуть новые (мутации, дупликации генов). Дупликации менее подавляются естественным отбором, чем мутации. Многие гормоны могу синтезироваться не в одной железе, а в нескольких. Например, инсулин вырабатывается в поджелудочной железе, подчелюстной железе, 12-перстной кишке и других органах. Существует зависимость генов, контролирующих синтез гормонов от положения.
Дыхательная система.

Большинство животных – аэробы. Диффузия газов из атмосферы посредством водного раствора осуществляется при дыхании. Элементы кожного и водного дыхания сохраняются даже в высших позвоночных животных. В ходе эволюции у животных возникли разнообразные дыхательные приспособления – производные кожи и пищеварительной трубки. Жабры и легкие – производные глотки.

Онтофилогенетическая обусловленность пороков развития.

  1. Биогенетический закон.
  2. Преобразование онтогенезов.
  3. Пороки развития.

Эволюционные преобразования связаны не только с образованием и вымиранием видов, но и преобразованием онтогенеза. Онтогенез – феномен, без которого эволюция была бы невозможна или остановилась на предживом уровне. На основе перестроек онтогенеза происходят любые филогенетические преобразования. Геккель, Мюллер: « Онтогения есть краткое повторение филогении» — биогенетический закон. Из него вытекают 2 правила.

  1. правило рекапитуляции – учение о повторении в развитии ныне живущих организмов строения их предков.
  2. Правило ценогенеза- учения о нарушениях развития, мешающих повторению развития.

Ученые сравнивали развитие позвоночных и беспозвоночных, зародышей высших и низших животных. Сравнивали стадии развития яйца. Период до и непосредственно после оплодотворения соответствует одноклеточному организму. Дробление – это превращение одноклеточного организма в многоклеточный. Стадия бластулы сравнима с первичным многоклеточным организмом, гаструла сравнима с кишечнополостным организмом. Зародыши высших позвоночных (в том числе и человека) повторяют признаки низших животных, от которых произошли. Например, зачатки жаберных щелей у человека быстро зарастают, роль органов дыхания за ними никогда не сохраняется. Появление жабр говорит о сохранении признаков далекой рыбоподобной формы – предшественника. Плавательные перепонки, хватательный рефлекс в раннем периоде дифференцировки рук, сосательный рефлекс.

Явление повторения в развитии высших форм признаков предков, живших в прошлом и имевших более простое строение – рекапитуляция.

Отношение к теории менялось. Теория Геккеля не может претендовать на роль всеобщего биологического правила, т.к. филогенетические изменения иногда происходят путем добавления новых терминальных, конечных стадий, причем время онтогенеза сохраняется. Закон рекапитуляции справедлив, когда эволюционные изменения связаны с терминальными стадиями.

Параллельно с этими учеными Карл Бэр тоже обратил внимание на параллельность процессов филогенеза и онтогенеза.

1828 год – «Закон зародышевого сходства». К.Бэр истолковал это явление совсем иначе: « сходство между зародышами разных групп больше, чем между взрослыми особями этих групп». Зародыш проходит ряд стадий, отражающих план тех разнообразных групп, к которым он принадлежит. Причем в определенном порядке от более общих к более подчиненным группам. Общие признаки появляются раньше, чем специальные признаки. Видоспецифические признаки проявляются позднее, чем признаки класса, типа и т.д.

Концепция содержит элементы рекапитуляции, но более общебиологическая. Получила большее признание, чем теория Геккеля и Мюллера.

В преобразовании онтогенеза принимают участие разные процессы.

Эмбриональные адаптации. Онтогенез состоит из ряда определенных стадий, каждая из которых протекает в определенной среде. Все стадии проходят под генетическим контролем и под действием естественного отбора. Последовательные стадии между собой связаны, все вместе они составляют онтогенез. В ходе онтогенеза формируются определенные признаки, которые используются в детском возрасте, затем исчезают – ценогенетические признаки. Ценогенезы – приспособительные изменения зародыша/личинки к специфическим условиям зародышевого, личиночного развития.

Например, качественные изменения у человека – амнион, аллантоис, хорион, желточный мешок, плацента. Это провизорные органы, выполняющие разные функции, со временем эти функции начинают выполняться другими органами и системами. Внезародышевые органы не принимают участия в формировании тела зародыша, но без них его развитие было бы невозможно.

Филэмбриогенезы. Филэмбриогенез – такой способ эволюции онтогенеза, который состоит в изменении процессов морфогенеза, связанных с адаптацией взрослых организмов. Ученее о филэмбриогенезах было разработано Северцовым в 1910 году. Основное положение – первичность онтогенетических изменений по отношению к филогенетическим. Путем филэмбриогенеза происходят преобразования и взрослых, и промежуточных, и начальных стадий. В зависимости от стадий выявлены типы филэмбриогенеза:

Посредством филэмбриогенезов происходит и усложнение, и упрощение строения и функций (например, паразитизм – более упрощенное строение, соответствующее условиям среды).

Архаллаксисы – изменения, происходящие на ранних стадиях эмбрионального развития. Выражаются в изменении дифференцировки эмбриональных зачатков, изменении массы зачатков, сдвиге места и времени закладки органов (гетеротопии и гетерохронии), изменении начального развития зачатков. Считается, что архаллаксисы происходят на ранних этапах. Отделение половых клеток от соматических произошло в колониальных организмах путем архаллаксиса. Другой пример – у растений – изменение строения, мутовок, увеличивается количество симметричных органов; появление волосяного покрова у млекопитающих. Рекапитуляции проявляются только при закладке органов, потом зародыши идут в развитии по другому пути. Изменения приводят к крупным преобразованиям онтогенеза и являются основным источником прогрессивного развития природы и эволюции взрослых организмов.

Читайте также:  Как принимать имбирь при сахарном диабете 2 типа, можно ли его употреблять

Девиация (от латинского – «отклонение») – изменение развития признаков в результате резкого отклонения от первоначального направления на средних этапах эмбриогенеза. Например, формирование роговых чешуек у рептилий. Вначале развитие в точности повторяет развитие плакоидной чешуи рыб, но потом происходит отклонение. Однодольный зародыш растения появился в результате замещения двух боковых точек роста одной верхушечной. Точно также – возникновение среднего уха, появление сложных коренных зубов млекопитающих. Рекапитулирует значительная часть признаков предковых форм. На основе девиации происходят существенные эволюционные изменения.

Анаболия (от греческого – «подъем») – добавление, надставка новых стадий развития в конце морфогенеза какого-либо органа. Например, эволюция почки. Сначала формируется предпочка, далее – первичная почка, вторичная почка. При эволюции путем анаболии более ранние стадии не изменяются, а предшествующая стадия новой стадии рекапитулирует.

Процесс морфогенеза довольно устойчив. Всяческое изменение приводит к снижению жизнеспособности. Анаболии возникают чаще архаллаксиса и девиаций. С генетической точки зрения, все 3 способа эволюции онтогенеза объясняются объемом наследственной информации

Автономность онтогенеза – независимость онтогенеза от колебаний внешней среды и генофонда. Между генами и окончательным фенотипом проходит весь онтогенез. Онтогенез – среда, устойчивая к любым помехам. Появляющиеся новые мутации чаще всего убираются, они могут изменить скорость биохимических реакций, количество производимого продукта, но фенотип не изменится. Изменение обмена веществ, фенотипа приводит к гибели клеток и вымиранию видов.
Онтофилогенетическая обусловленность пороков развития.
Любой процесс, происходящий в организме, имеет свой материальный субстрат, определяется нормой реакции и регулируется гомеостазом. Материальный субстрат гомеостаза – все видовые особенности (возраст, генотип, фенотип). В ходе исторического развития постепенно совершенствовались приспособительные ответы организма на все внешние раздражители. Эта закономерность повторяется при развитии зародыша. С момента образования зиготы могут возникать нарушения обмена веществ. Они могут приводить к дистрофическим изменениям, некрозу и гибели самого зародыша. С развитием генотипа появляются более сложные ответные реакции — расстройство кровообращения, иммунологические, воспалительные процессы и т.д.

Патологические процессы пренатального развития – отклонения развития от момента образования зиготы до родов. В клинике эмбриогенез делят на 4 периода:

Для каждого этапа характерны специфические виды патологий.

Аплазия (агенезия) – полное врожденное отсутствие органа или его части.

Гипоплазия – врожденное недоразвитие органа.

Гипотрофия – уменьшение массы органа или плода в целом.

Гипертрофия – увеличение массы органа или зародыша.

Гиперплазия – врожденное увеличение размеров органа.

Макросомия, гигантизм – увеличение длины и массы тела.

Гетеротопия – наличие клеток, тканей, участков и целых органов в нехарактерных местах.

Гетероплазия – нарушение дифференцировки отдельных типов тканей.

Эктопия – смещение органа.

Атрезия – отсутствие канала или отверстия.

Персистирование – сохранение эмбриональных структур, в норме исчезающих.

Стеноз – сужение канала или отверстия.

Гаметопатия – все виды поражения гамет, возникающие при ово — и сперматогенезе, обусловлены мутациями.

Бластопатии – нарушения, связанные с поражением бластоцисты, т.е. зародыша 15 дней после оплодотворения.

Результаты бластопатий:

    1. пустые зародышевые мешки;
    2. гипоплазия, аплазия внезародышевых органов (амниона, амниотической ножки и желточного мешка);
    3. внематочная беременность (имплантация зиготы в роге и возле внутреннего зева матки) или нарушение глубины имплантации;
    4. нарушение ориентации эмбриобласта;
    5. двойниковые пороки;
    6. сиреномелия (веретенообразное тело, ласты – см. рисунок);
    7. циклопия;
    8. мозаицизм.

Филогенез иммунной системы

Иммунная система осуществляет защиту организма от проникновения в организм генетически чужеродных тел: микроорганизмов, вирусов, чужих клеток, инородных тел. Ее действие основано на способности отличать собственные структуры от генетически чужеродных, элиминируя их.

В эволюции сформировалось три главных формы иммунного ответа:

Фагоцитоз, или неспецифическое уничтожение чужеродного материала;

Клеточный иммунитет, основанный на специфическом распознавании и уничтожении такого материала Т-лимфоцитами;

Гуморальный иммунитет, осуществляемый путем образования потомками В-лимфоцитов, так называемыми плазматическими клетками, иммуноглобулинов (антител) и связывания ими чужеродных антигенов.

В эволюции выделяют три этапа формирования иммунного ответа:

Квазииммунное (лат наподобие) распознавание организмом своих и чужеродных клеток. Этот тип реакции наблюдается от кишечнополостных до млекопитающих. Эта реакция не связана с выработкой иммунных тел, и при этом не формируется иммунной памяти, то есть еще не происходит усиления иммунной реакции на повторное проникновение чужеродного материала.

Примитивный клеточный иммунитет обнаружен у кольчатых червей и иглокожих. Он обеспечивается целомоцитами – клетками вторичной полости тела, способными уничтожать чужеродный материал. На этом этапе появляется иммунологическая память.

Система интегрального клеточного и гуморального иммунитета. Для нее характерны специфические клеточные и гуморальные реакции на чужеродные тела, наличие лимфоидных органов иммунитета, образование антител. Такого типа иммунная система не характерна для беспозвоночных.

Круглоротые способны формировать антитела, но вопрос о наличии у них вилочковой железы, как центрального органа иммуногенеза, является пока открытым. Впервые тимус обнаруживается у рыб.

Эволюционные предшественники лимфоидных органов млекопитающих – тимус, селезенка, скопление лимфоидной ткани обнаруживаются в полном объеме у амфибий. У низших позвоночных (рыбы, амфибии) вилочковая железа активно выделяет антитела, что не характерно для птиц и млекопитающих.

Особенность иммунного ответа птиц состоит в налиции особоги лимфоидного органа – фабрициевой сумки. В этом органе образуются В-лимфоциты, которые после антигенной стимуляции способны трансформироваться в плазматические клетки, вырабатывающие антитела.

У млекопитающих органы иммунной системы разделяют на два типа: центральные и периферические. В центральных органах созревание лимфоцитов происходит без существенного влияния антигенов. Развитие периферических органов, наоборот, непосредственно зависит от антигенного воздействия – лишь при контакте с антигеном в них начинаются процессы размножения и дифференциации лимфоцитов.

Центральнымиорганами иммуногенеза у млекопитающих являютсятимус, где происходит образование и размножение Т-лимфоцитов, а такжекрасный костный мозг, где образуются и размножаются В-лимфоциты.

На ранних стадиях эмбриогенеза из желточного мешка в тимус и красный костный мозг мигрируют стволовые лимфатические клетки. После рождения источником стволовых клеток становится красный костный мозг.

Периферическими лимфоидными органами являются: лимфоузлы, селезенка, миндалины, лимфоидные фолликулы кишечника. К моменту рождения они еще практически не сформированы и образование в них лимфоцитов начинается только после антигенной стимуляции, после того, как они заселяются Т- и В-лимфоцитами из центральных органов иммуногенеза.

Таким образом, иммунная система возникла на ранних этапах эволюции и в ее основе сложились механизмы узнавания чужеродных антигенов, их разрушение и удаление, что совершенно необходимо для выживания организмов.

С эволюционной точки зрения самой древней из иммунных реакций стал фагоцитоз, который имеет место у всех животных – от одноклеточных и до самых высокоорганизованных многоклеточных организмов. Для них это одна из форм неспецифической защиты от внедрения генетически чужеродных тел. По мере эволюции сложились и более сложные формы защиты – клеточный и гуморальный иммунитет, которые четко различают «свое» и «не свое» и защищают организм от последних, в том числе и от злокачественно перерожденных собственных клеток.

Ссылка на основную публикацию
Цена на УЗИ в ИНВИТРО, сделать УЗИ в Ногинске и других городах по доступной стоимости
Ногинск узи малого таза УЗИ без преувеличения можно назвать шедевром современной диагностики. Безопасный, точный, недорогой способ исследовать организм человека, не...
Хронический и острый тонзиллит — лечение и симптомы
Мирамистин при тонзиллите: фармакологическое действие антисептика Мирамистин при тонзиллите – это широкоспектральное медикаментозное средство, обладающее антисептическим, противовирусным и антибактериальным действием....
Хронический калькулезный холецистит история болезни
Острый холецистит , MD, Thomas Jefferson University 3D модель (0) Аудио (0) Боковые панели (1) Видео (0) Изображения (0) Клинический...
Центр Алмазова вводит специалитет по программе «Лечебное дело» » Медвестник
Центр Алмазова впервые набирает первокурсников Правительство Российской Федерации постановило провести эксперимент по реализации образовательной программы высшего образования – программы специалитета...
Adblock detector